KI-gestützte Bildanalyse: aussagekräftig nur mit passender Metrik
/ via nct /
Pressemitteilung des Deutschen Krebsforschungszentrum (DKFZ)
Wie gut lösen die Algorithmen, die in der KI-gestützten Auswertung medizinscher Bilder genutzt werden, ihre jeweiligen Aufgaben? Das hängt im hohen Maße davon ab, anhand welcher Messgrößen – Metriken – ihre Leistung bewertet wird. Ein internationales Konsortium unter der Federführung von Wissenschaftlerinnen vom Deutschen Krebsforschungszentrum (DKFZ) und dem Nationalen Centrum für Tumorerkrankungen (NCT) Heidelberg hat das weltweit verfügbare Wissen über die spezifischen Stärken, Schwächen und Limitationen der verschiedenen Validierungs-Metriken zusammengetragen. Mit „Metrics Reloaded“ stellen die Forschenden nun ein breit verfügbares online-Tool zur Verfügung, das Nutzer bei der Auswahl des für ihre Aufgabenstellung geeigneten Algorithmus unterstützt.
Immer mehr Bereiche der Medizin setzen auf Unterstützung durch künstliche Intelligenz (KI). Das gilt besonders für das breite Spektrum an Fragestellungen, die auf der Auswertung von Bilddaten beruhen: So suchen Ärzte in Mammographien nach kleinsten Krebsherden oder berechnen das Volumen eines Hirntumors anhand der Schichtbilder aus dem MRT. Mit endoskopischen Aufnahmen des Darms spüren sie Polypen auf, bei der Auswertung von mikroskopischen Gewebeschnitten müssen subtile Änderungen einzelner Zellen erfasst werden.
Doch sind die Algorithmen, die für diese verschiedenartigen Bildanalysen eingesetzt werden, tatsächlich immer für die jeweilige Aufgabe geeignet? Das hängt in hohem Maße davon ab, welche Messgrößen, im Fachbegriff als „Metriken“ bezeichnet, sie erfassen – und ob diese tatsächlich zur jeweiligen Aufgabe passen.
„Wir bemerken oft, dass für bestimmte Aufgaben Validierungs-Metriken genutzt werden, die aus klinischer Perspektive für die Aufgabenstellung gar nicht relevant sind“, sagt Lena Maier-Hein vom DKFZ und nennt ein Beispiel dafür: „Bei der Suche nach Metastasen im Gehirn ist es zunächst wichtiger, dass der Algorithmus auch kleinste Läsionen erfasst, als dass er hochpräzise die Konturen jeder einzelnen Metastase definieren kann.“